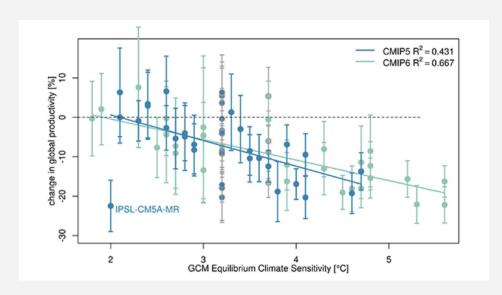


Emily Burgess PhD

Jace Colby MS Geography

Patrick Kelly
PhD
Environment and Society

Mitchell Parsons
PhD
Wildland Resources



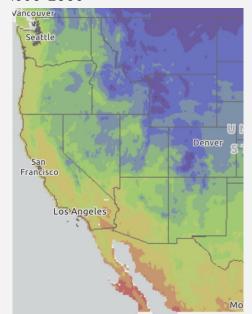
Ren Weinstock
MS
Biology

Background

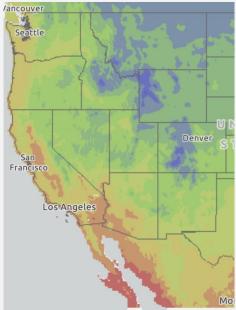
Global

Climate change is impacting agricultural production currently, and will more so in the future

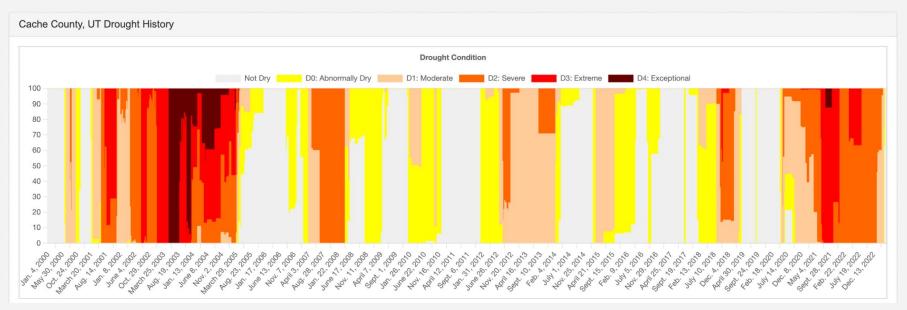
← Projected changes in global crop productivity under RCP8.5 using CMIP5 and CMIP6 climate models at the end of the 21st century (2069–2099)


(Mueller et al. 2021, Environmental Research Letters)

Background Cache Valley



Shift in USDA Hardiness Zones

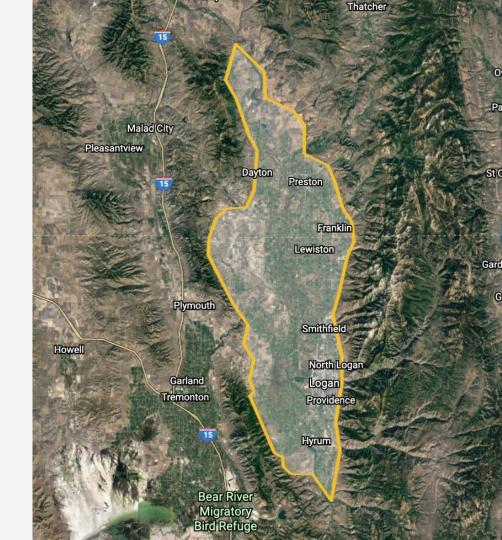


2070-2099

Background Cache Valley

Drought History

Background Project formation

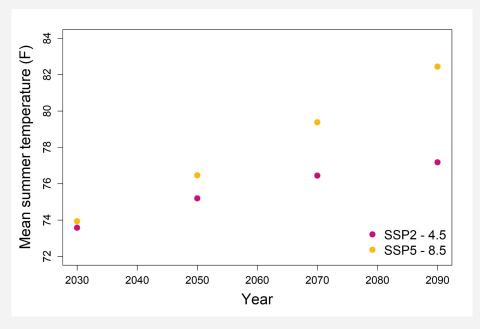

Matt Yost

Plants, Soils, & Climate (PSC)

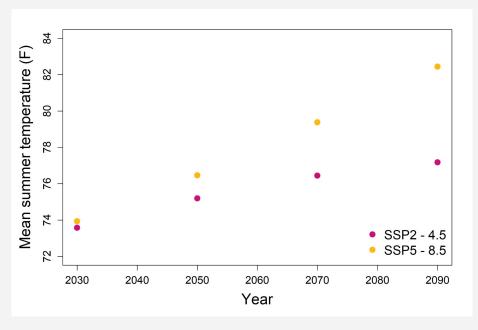
Associate Department Head | Associate Professor | Agroclimate Extension Specialist

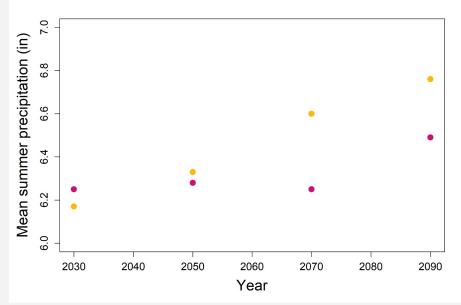
Objectives

- Assess suitability of commonly grown crops to future climate projections in Cache valley.
- 2. Identify alternative crops suitable to future climate scenarios
- Create comparative tool and fact sheets for growers

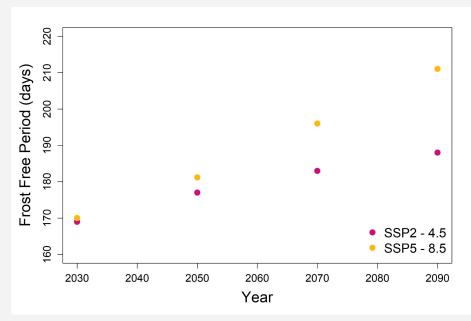


Outline

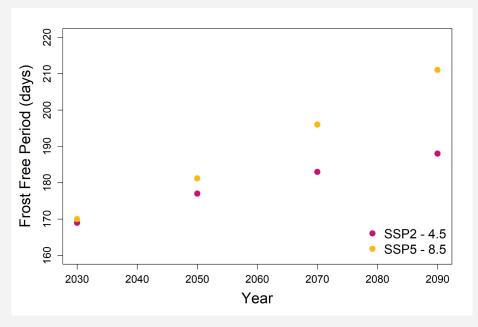

- 1. Climate modeling
- 2. Economic data
- 3. Stakeholder input & final products

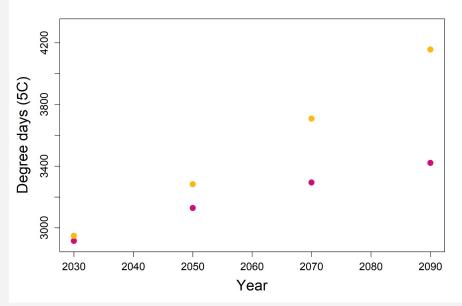


Change in Summer (May-Sept) Temperature

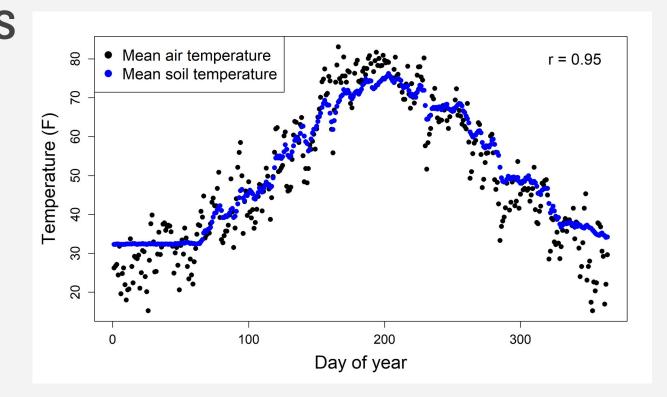


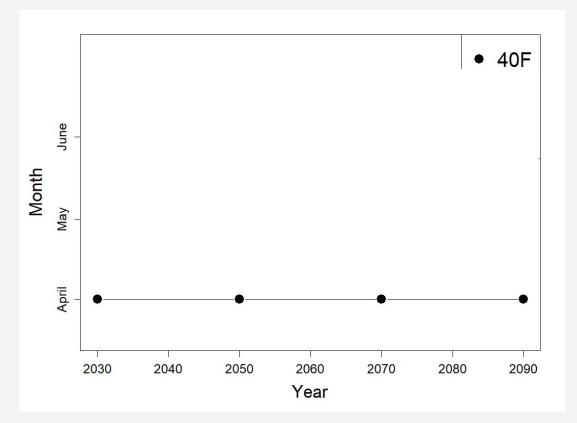
Change in Summer (May-Sept)
Temperature and Precipitation

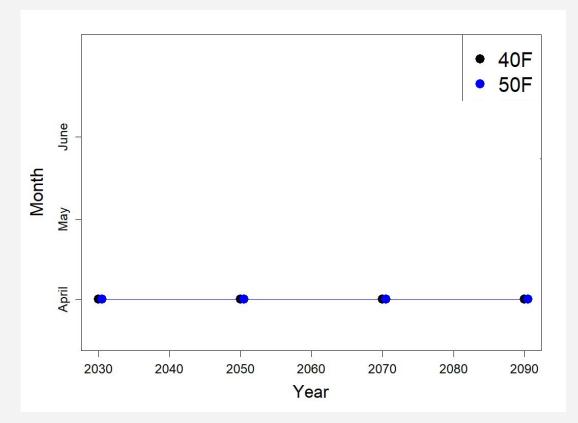


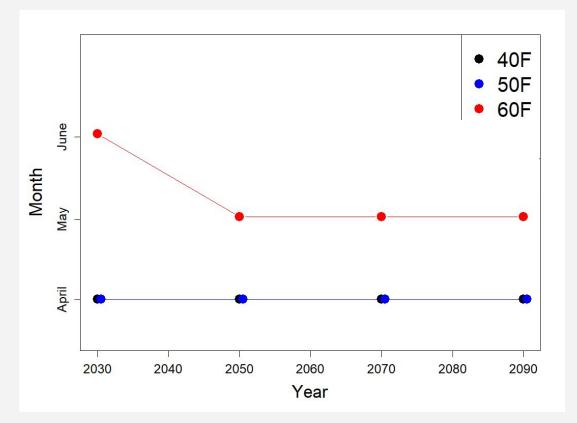


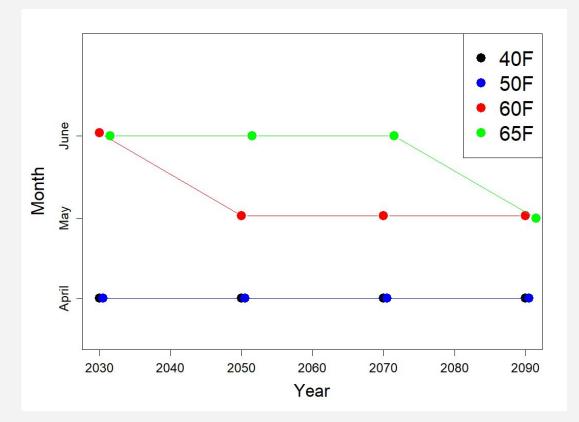
Change in Frost Free Days




Change in Frost Free Days and Degree Days






Soil Temperature

Climate

Growing Season - excess days

Su	uita	abi	lit	ty

Crop	FFD 2030	FFD 2050	FFD 2070	FFD 2090
Alfalfa	135	139	143	146
Silage corn	65	69	73	76
Spring wheat	85	89	93	96
Barley	105	109	113	116
Oat	93	97	101	104
Safflower	60	64	68	71

Climate

Growing Season - excess days

Suitability

-		J			-	2030	2050	2070	2090
Crop	FFD 2030	FFD 2050	FFD 2070	FFD 2090	Forage sorghum	44	48	52	55
Alfalfa	135	139	143	146	Forage sugarbeets	50	54	58	61
Silage corn	65	69	73	76	Sunflower	55	59	63	66
Spring wheat	85	89	93	96	Sesame	-1	3	7	10
Barley	105	109	113	116	Dry edible beans	19	23	27	30
Oat	93	97	101	104	Grain sorghum	14	18	22	25
Safflower	60	64	68	71	Lentils	88	92	96	99

Crop

Climate

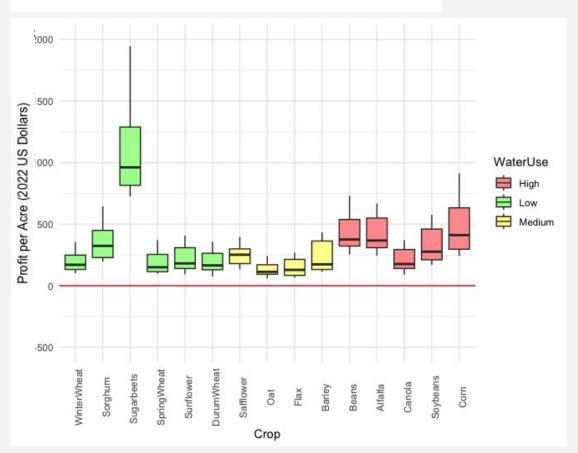
Growing Season - excess days

Suitability

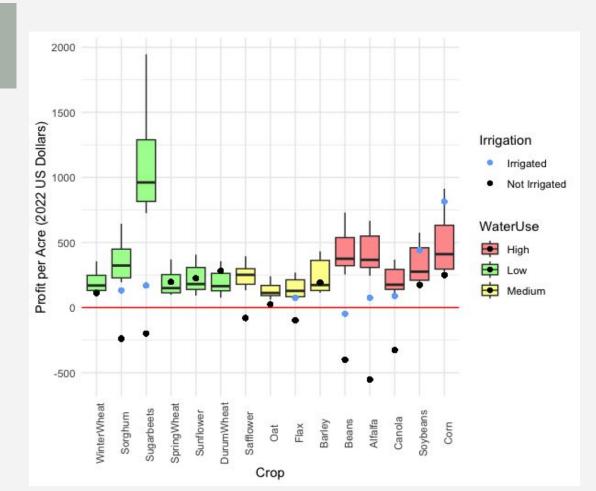
Crop	۸.	FFD 2030	FFD 2050	FFD 2070	FFD 2090
Alfalfa		135	139	143	146
Silage corn		65	69	73	76
Spring wheat		85	89	93	96
Barley		105	109	113	116
Oat		93	97	101	104
Safflower		60	64	68	71

Crop	FFD 2030	FFD 2050	FFD 2070	FFD 2090
Forage sorghum $igcup$	44	48	52	55
Forage sugarbeets	50	54	58	61
Sunflower	55	59	63	66
Sesame	-1	3	7	10
Dry edible beans	19	23	27	30
Grain sorghum	14	18	22	25
Lentils	88	92	96	99

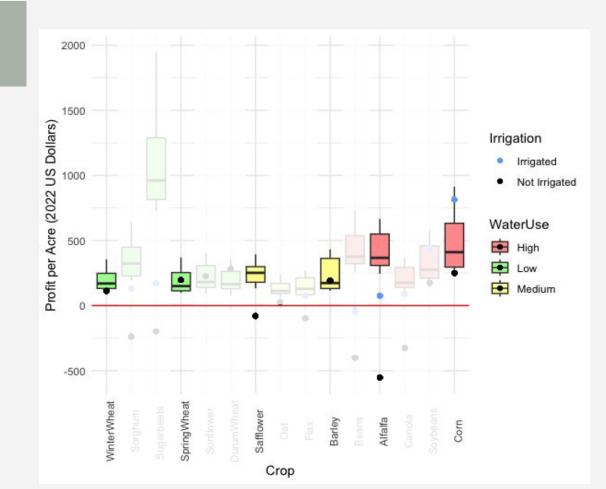
Methods → Historical data us


- → Historical data used to characterize price markets, adjusted for inflation into 2022 USD
- → Prices tied to water requirements
- → 2022 crop budgets used to estimate costs and paired with 2022 price-derived revenues to determine net profits

Trends


→ Box and whisker plot of 30 year market value trends

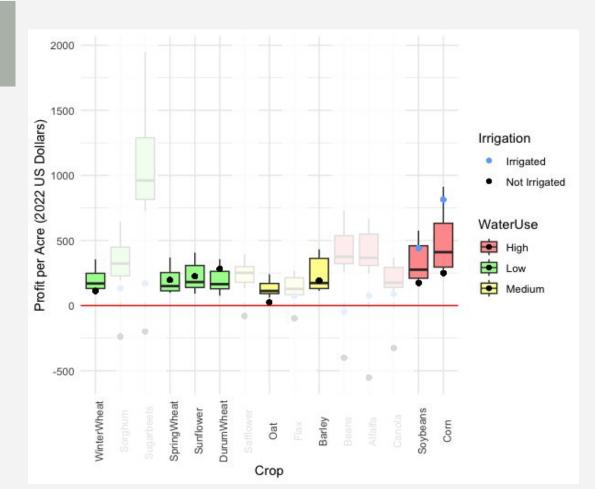
Market Variability 1991-2021


Trends

- → Box and whisker plot of 30 year market value trends
- → Points are estimated 2022 profits per acre

Trends

- → Highlighted are current most common crops by acreage
 - ♦ Hay/Alfalfa 46%
 - ◆ Wheat 12%
 - ◆ Corn 6%
 - ◆ Barley 5%
 - ◆ Safflower 3%
 - ◆ Other 25%

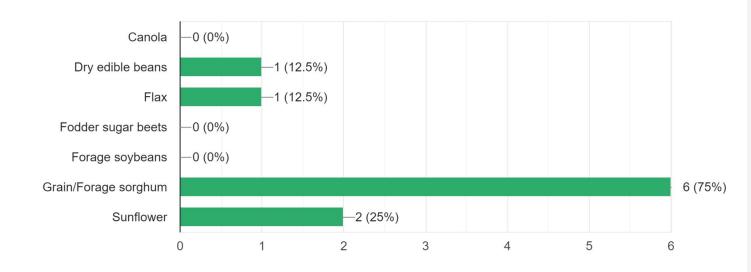

Dryland Crops

Extreme Drought

Moderate drought

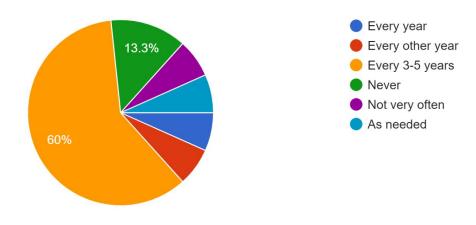
No drought

Winter Wheat	
Spring Wheat	
Sunflower	
Durum Wheat	
Oats	
Barley	
Soybeans	
Corn	


Producer Input

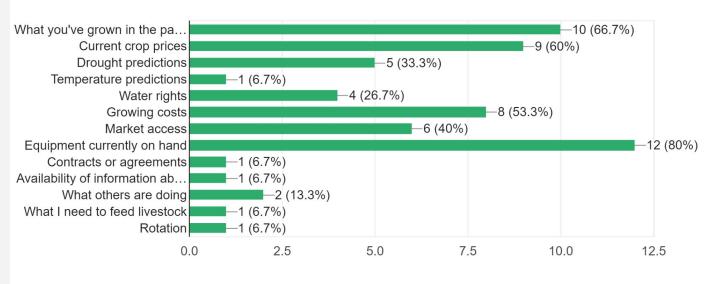
- → Presented at Cache County Crop School
- → Some alternatives already being grown
 - ◆ Sorghum
 - Sunflower
- → Markets appear to be common challenge for trying alternatives

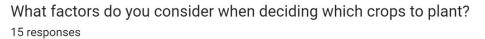
Input

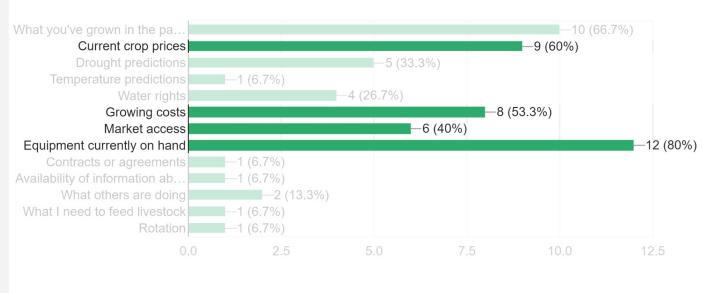

Do you have experience growing any of the crops we discussed? Please mark below. 8 responses

Input

How often do you change which crops you are growing because of unexpected changes to external factors (e.g. water availability, markets)?

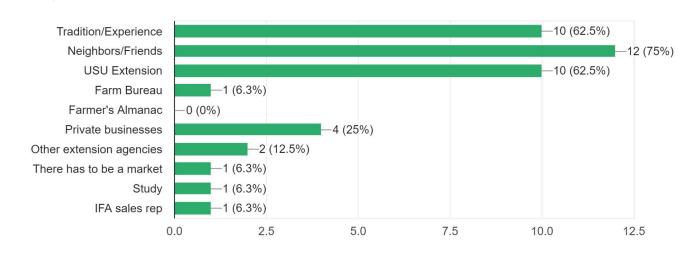

15 responses


Input


What factors do you consider when deciding which crops to plant?

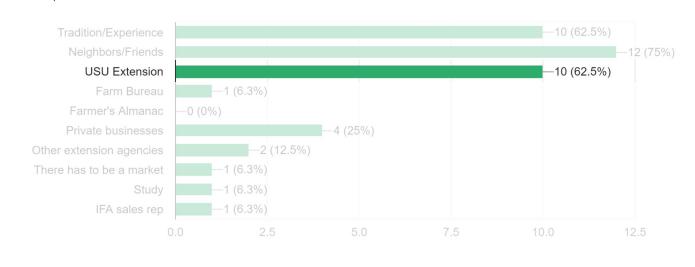
15 responses

Input



Input

Where do you get your information for deciding which crops to plant? Please check the ones you use.


16 responses

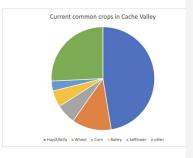
Input

Where do you get your information for deciding which crops to plant? Please check the ones you use.

16 responses

Final

Products


- → Publish on USU Extension Website
 - Website to compare crops & economic trends

Website draft:

Page Title: Alternative Crops for Cache Valley

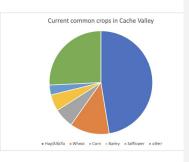
Section 1 Title/header: **Benefits of Alternative Crops**

Text: Cache Valley is currently dominated by a few commonly grown crops. However, there are also several alternative crops that are well suited to the climate of the region. Adding these crops into rotations with crops that are already commonly grown can add drought tolerance, lowering risk of losses because of drought. Some alternative crops may also be more profitable than some of the currently grown crops, though in some cases markets may be difficult to find. Learn more about potential alternative crops below.

Section 2 Title/header: Explore Alternative Crops for Cache Valley

Final

Products


- → Publish on USU Extension Website
 - Website to compare crops & economic trends
 - Crop fact sheets

Website draft:

Page Title: Alternative Crops for Cache Valley

Section 1 Title/header: **Benefits of Alternative Crops**

Text: Cache Valley is currently dominated by a few commonly grown crops. However, there are also several alternative crops that are well suited to the climate of the region. Adding these crops into rotations with crops that are already commonly grown can add drought tolerance, lowering risk of losses because of drought. Some alternative crops may also be more profitable than some of the currently grown crops, though in some cases markets may be difficult to find. Learn more about potential alternative crops below.

Section 2 Title/header: Explore Alternative Crops for Cache Valley

Fact sheets: Sunflower, Canola, Soybean, Sugar beet, Flax, Dry beans

ntroduction

Sunflower (Helianthus annuus) is a large flowering crop in the Asteracase family native to North America. Sunflower has been used by humans for thousands of years and was grown by Native Americans before European settlement of the Americas, but it didn't take off as a crop in the United States until the 1970s. After sunflower was introduced to Europe it became popular in Russia, where plant breeders developed the crop to make it more suitable for consumption as food because it was one of the only oily foods allowed by the Orthodox Church during Lent. After the crop was developed it was reintroduced to the US, where it became a popular crop.

Worldwide, Ukraine and Russia are the leading sunflower producers. According to the National Agricultural and Statistical Service, about 1.5 million acres of sunflower are planted every year in the US, with North and South Dakota leading production at the state level. Sunflower is a highly versatile crop and can be used as an oilseed, birdseed, confectionary and food use, as a ower crop or as an ornamental. Sunflower also has several other benefits, such as improving soils, and helping pollinators, other beneficial insects, and songbirds. If you are interested in growing sunflower and would like more detailed resources, there are several places to look. Both North Dakota State University.

(https://www.ag.ndsu.edu/publications/crops/sunflower-production-guide) and South Dakota State University (https://extension.sdstate.edu/sites/default/files/2022-03/P-00205-Book-v2.pdf) have extensive guides, and the University of Wyoming has a guide on specifically cut sunflowers

(https://wyoextension.org/parkcounty/wp-content/uploads/2016/03/A-Wyoming-Growers-Reference-Guide-to-Cut-Sunflowers.pdf)

USes

Introduction

grown in the US 2022 (NASS).

Many of Canola's uses are very similar to soybean. Most canola seed is used to produce vegetable oil, used for cooking and production of many processed foods. Canola can also be used to make biodiesel, diesel fuel made from plants (or sometimes animal fat) instead of petroleum. Both production of biodiesel and vegetable oil create a meal byproduct that can be used as animal feed, and occasionally whole seeds are ground to be used as animal feed. Canola can also be used as a cover crop, planted in the fall and killed in the spring by mowing,

Canola is an oilseed crop in the mustard family, Brassicaceae, Originally a European rapeseed,

acid and more fit for consumption as food (hence the name--CANadian Oilseed Low in Acid). It

Canola was developed by Canadian plant breeders to create an oilseed that was low in erucic

is a very common oilseed crop, second only after Soybeans. The US is currently the fourth largest canola producer, after the EU, China, and Canada, however the US currently imports

much of its canola oil, signaling the potential for a domestic canola market. North Dakota

produces the majority of the canola in the US, producing 1.8 of the 2.2 million acres of canola

much of the same equipment. Wheat can be replaced with canola in many crop rotations, such

as a corn-canola-soybean rotation, but because canola can act as a disease bridge, planting it

in the same field more than once every three years should be avoided. Additionally, some crops

(rapeseed, mustard), pea, dry bean, flax, sunflower, alfalfa, and safflower. Canola can be double

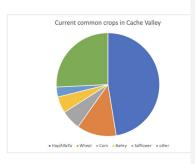
should be avoided in rotation with canola because of disease, including other brassicas

cropped with soybeans, sunflowers, sorghum, cowpeas and pearl millet.

Canola can be grown very similarly to wheat-- it can be a spring or winter crop and uses

Final

Products


- Publish on USU Extension Website
 - Website to compare crops & economic trends
 - Crop fact sheets
- Publish on Utah Climate Center Website
 - Climate model report
- Give report to USU Extension
 - Climate model
 - Producer survey responses

Website draft:

Page Title: Alternative Crops for Cache Valley

Section 1 Title/header: Benefits of Alternative Crops

Text: Cache Valley is currently dominated by a few commonly grown crops. However, there are also several alternative crops that are well suited to the climate of the region. Adding these crops into rotations with crops that are already commonly grown can add drought tolerance, lowering risk of losses because of drought. Some alternative crops may also be more profitable than some of the currently grown crops, though in some cases markets may be difficult to find. Learn more about potential alternative crops below.

Section 2 Title/header: Explore Alternative Crops for Cache Valley

Fact sheets: Sunflower, Canola, Soybean, Sugar beet, Flax, Dry beans

Sunflower (Helianthus annuus) is a large flowering crop in the Asteraceae family native to North America. Sunflower has been used by humans for thousands of years and was grown by Native Americans before European settlement of the Americas, but it didn't take off as a crop in the United States until the 1970s. After sunflower was introduced to Europe it became popular in Russia, where plant breeders developed the crop to make it more suitable for consumption as food because it was one of the only oily foods allowed by the Orthodox Church during Lent. After the crop was developed it was reintroduced to the US, where it became a popular crop,

Worldwide, Ukraine and Russia are the leading sunflower producers. According to the National Agricultural and Statistical Service, about 1.5 million acres of sunflower are planted every year in the US, with North and South Dakota leading production at the state level. Sunflower is a highly versatile crop and can be used as an oilseed, birdseed, confectionary and food use, as a cover crop or as an ornamental. Sunflower also has several other benefits, such as improving soils, and helping pollinators, other beneficial insects, and songbirds. If you are interested in growing sunflower and would like more detailed resources, there are several places to look, Both North Dakota State University

(https://www.ag.ndsu.edu/publications/crops/sunflower-production-guide) and South Dakota State University (https://extension.sdstate.edu/sites/default/files/2022-03/P-00205-Book-v2.pdf) have extensive guides, and the University of Wyoming has a guide on specifically cut

(https://wyoextension.org/parkcounty/wp-content/uploads/2016/03/A-Wyoming-Growers-Refere nce-Guide-to-Cut-Sunflowers.pdf)

Canola is an oilseed crop in the mustard family, Brassicaceae. Originally a European rapeseed, Canola was developed by Canadian plant breeders to create an oilseed that was low in erucic acid and more fit for consumption as food (hence the name -- CANadian Oilseed Low in Acid). It is a very common oilseed crop, second only after Soybeans. The US is currently the fourth largest canola producer, after the EU, China, and Canada, however the US currently imports much of its canola oil, signaling the potential for a domestic canola market. North Dakota produces the majority of the canola in the US, producing 1.8 of the 2.2 million acres of canola grown in the US 2022 (NASS).

Canola can be grown very similarly to wheat-- it can be a spring or winter crop and uses much of the same equipment. Wheat can be replaced with canola in many crop rotations, such as a com-canola-soybean rotation, but because canola can act as a disease bridge, planting it in the same field more than once every three years should be avoided. Additionally, some crops should be avoided in rotation with canola because of disease, including other brassicas (rapeseed, mustard), pea, dry bean, flax, sunflower, alfalfa, and safflower. Canola can be double cropped with soybeans, sunflowers, sorghum, cowpeas and pearl millet.

Many of Canola's uses are very similar to soybean. Most canola seed is used to produce vegetable oil, used for cooking and production of many processed foods, Canola can also be used to make biodiesel, diesel fuel made from plants (or sometimes animal fat) instead of petroleum. Both production of biodiesel and vegetable oil create a meal byproduct that can be used as animal feed, and occasionally whole seeds are ground to be used as animal feed. Canola can also be used as a cover crop, planted in the fall and killed in the spring by mowing

All together now one last time!

We have com-bined our knowledge to harvest the data, help farmers go hog wild, and sow the seed to make it grain!

THANK YOU

This project was supported Foundation under Grant No.